Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Food Sci Biotechnol ; 33(7): 1651-1659, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38623422

ABSTRACT

Mead is a fermented alcoholic beverage produced by yeast action on a diluted solution of honey. In this study, for the first time, sensory acceptance, purchase intention and color parameters of potentially probiotic mead with Saccharomyces boulardii were evaluated. The mead with S. boulardii presented yeast counts higher than 106 CFU/mL, being considered potentially probiotic, and tended to be yellow in color. About 160 tasters participated in the sensory evaluation, and 69.38% knew mead, but only 35.62% had tried the beverage. In terms of acceptance, the mead were within the acceptable range (above 5), and F2 (with initial soluble solids of 30° Brix and S. boulardii concentration of 0.030 g/L) was the most accepted, with an overall average of 7.63 ± 1.42 on the nine-point hedonic scale. In addition, F2 presented the highest purchase intention. In conclusion, the mead showed a tendency towards the color yellow and good sensory acceptance.

2.
Food Sci Technol Int ; : 10820132231162683, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36883202

ABSTRACT

Mead is an alcoholic beverage produced by the fermentation of a diluted honey solution by the action of yeast. Recently, research has shown the potential of S. boulardii for brewing beer and in the development of probiotic alcoholic beverages and, to date, no research has examined for mead production. The aim of this study was to evaluate the growth conditions of S. boulardii for the development of potentially probiotic mead. The findings show that initial wort soluble solids conditions of 30°Brix and initial concentration of 0.030 g/L of S. boulardii obtain potentially probiotic mead with viable yeast cells of 6.53 Log10 CFU/mL, alcohol content of 5.05%, and has the presence of total phenolics (17.72 mg GAE/100 mL) and natural antioxidants (62.79 and 1.37 µmol TE/100 mL for ABTS and FRAP methods, respectively). In conclusion, S. boulardii has a potential for the development of probiotic mead.

3.
Vet Res Commun ; 47(3): 1357-1368, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36823482

ABSTRACT

Lactic acid bacteria (LAB) are an important option for Salmonella control in animal production, resulting in lower antibiotic use. The objective of this research was to isolate LAB from meat products and from commercial probiotics sold as nutritional supplements for in vitro verification of their bioprotective potential. Eleven bacteria were identified as Pediococcus acidilactici, two as Lacticaseibacillus rhamnosus, one as Lacticaseibacillus paracasei paracasei, one as Limosilactobacillus fermentum, and one as a consortium of Lactobacillus delbrueckii bulgaricus and L. fermentum. All bacteria showed inhibitory activity against Salmonella, with emphasis on the inhibition of P. acidilactici PUCPR 011 against Salmonella Enteritidis 33SUSUP, S. Enteritidis 9SUSP, S. Enteritidis 56301, S. Enteritidis CRIFS 1016, Salmonella Typhimurium ATCC™ 14,028®, and Salmonella Gallinarum AL 1138, with inhibition halos of 7.3 ± 0.5 mm, 7.7 ± 1.0 mm, 9.0 ± 1.8 mm, 7.3 ± 0.5 mm, 7.7 ± 1.0 mm, and 7.3 ± 0.5, respectively. The isolates P. acidilactici PUCPR 011, P. acidilactici PUCPR 012, P. acidilactici PUCPR 014, L. fermentum PUCPR 005, L. paracasei paracasei PUCPR 013, and L. rhamnosus PUCPR 010 showed inhibition greater than 2 mm against at least 3 Salmonella and were used for encapsulation and in vitro digestion. The encapsulation efficiency ranged from 76.89 ± 1.54 to 116.48 ± 2.23%, and the population after 12 months of storage was from 5.31 ± 0.17 to 9.46 ± 0.09 log CFU/g. When simulating swine and chicken digestion, there was a large reduction in bacterial viability, stabilizing at concentrations close to 2.5 log CFU/mL after the analyses. The analyzed bacteria showed strong in vitro bioprotective potential; further analyses are required to determine in vivo effectiveness.


Subject(s)
Lactobacillales , Animals , Swine , Lactobacillales/physiology , Anti-Bacterial Agents/pharmacology , Chickens , Salmonella typhimurium
4.
Sci Rep ; 12(1): 10663, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35739190

ABSTRACT

Soybean is one of the most important crops worldwide. Brazil and the United States (US) are the world's two biggest producers of this legume. The increase of publicly available DNA sequencing data as well as high-density genotyping data of multiple soybean germplasms has made it possible to understand the genetic relationships and identify genomics regions that underwent selection pressure during soy domestication and breeding. In this study, we analyzed the genetic relationships between Brazilian (N = 235) and US soybean cultivars (N = 675) released in different decades and screened for genomic signatures between Brazilian and US cultivars. The population structure analysis demonstrated that the Brazilian germplasm has a narrower genetic base than the US germplasm. The US cultivars were grouped according to maturity groups, while Brazilian cultivars were separated according to decade of release. We found 73 SNPs that differentiate Brazilian and US soybean germplasm. Maturity-associated SNPs showed high allelic frequency differences between Brazilian and US accessions. Other important loci were identified separating cultivars released before and after 1996 in Brazil. Our data showed important genomic regions under selection during decades of soybean breeding in Brazil and the US that should be targeted to adapt lines from different origins in these countries.


Subject(s)
Glycine max , Plant Breeding , Brazil , Genome, Plant , Genomics , Polymorphism, Single Nucleotide , Glycine max/genetics , United States
5.
Front Plant Sci ; 13: 842571, 2022.
Article in English | MEDLINE | ID: mdl-35432410

ABSTRACT

Although Brazil is currently the largest soybean producer in the world, only a small number of studies have analyzed the genetic diversity of Brazilian soybean. These studies have shown the existence of a narrow genetic base. The objectives of this work were to analyze the population structure and genetic diversity, and to identify selection signatures in the genome of soybean germplasms from different companies in Brazil. A panel consisting of 343 soybean lines from Brazil, North America, and Asia was genotyped using genotyping by sequencing (GBS). Population structure was assessed by Bayesian and multivariate approaches. Genetic diversity was analyzed using metrics such as the fixation index, nucleotide diversity, genetic dissimilarity, and linkage disequilibrium. The software BayeScan was used to detect selection signatures between Brazilian and Asian accessions as well as among Brazilian germplasms. Region of origin, company of origin, and relative maturity group (RMG) all had a significant influence on population structure. Varieties belonging to the same company and especially to the same RMG exhibited a high level of genetic similarity. This result was exacerbated among early maturing accessions. Brazilian soybean showed significantly lower genetic diversity when compared to Asian accessions. This was expected, because the crop's region of origin is its main genetic diversity reserve. We identified 7 genomic regions under selection between the Brazilian and Asian accessions, and 27 among Brazilian varieties developed by different companies. Associated with these genomic regions, we found 96 quantitative trait loci (QTLs) for important soybean breeding traits such as flowering, maturity, plant architecture, productivity components, pathogen resistance, and seed composition. Some of the QTLs associated with the markers under selection have genes of great importance to soybean's regional adaptation. The results reported herein allowed to expand the knowledge about the organization of the genetic variability of the Brazilian soybean germplasm. Furthermore, it was possible to identify genomic regions under selection possibly associated with the adaptation of soybean to Brazilian environments.

6.
Microbiology (Reading) ; 167(11)2021 11.
Article in English | MEDLINE | ID: mdl-34738887

ABSTRACT

The genus Salmonella is closely associated with foodborne outbreaks and animal diseases, and reports of antimicrobial resistance in Salmonella species are frequent. Several alternatives have been developed to control this pathogen, such as cell-free supernatants (CFS). Our objective here was to evaluate the use of lactic acid bacteria (LAB) CFS against Salmonella in vitro. Seventeen strains of LAB were used to produce CFS, and their antimicrobial activity was screened towards six strains of Salmonella. In addition, CFS were also pH-neutralized and/or boiled. Those with the best results were lyophilized. MICs of lyophilized CFS were 11.25-22.5 g l-1. Freeze-dried CFS were also used to supplement swine and poultry feed (11.25 g kg-1) and in vitro simulated digestion of both species was performed, with Salmonella contamination of 5×106 and 2×105 c.f.u. g-1 of swine and poultry feed, respectively. In the antimicrobial screening, all acidic CFS were able to inhibit the growth of Salmonella. After pH neutralization, Lactobacillus acidophilus Llorente, Limosilactobacillus fermentum CCT 1629, Lactiplantibacillus plantarum PUCPR44, Limosilactobacillus reuteri BioGaia, Lacticaseibacillus rhamnosus ATCC 7469 and Pediococcus pentosaceus UM116 CFS were the only strains that partially maintained their antimicrobial activity and, therefore, were chosen for lyophilization. In the simulated swine digestion, Salmonella counts were reduced ≥1.78 log c.f.u. g-1 in the digesta containing either of the CFS. In the chicken simulation, a significant reduction was obtained with all CFS used (average reduction of 0.59±0.01 log c.f.u. ml-1). In general, the lyophilized CFS of L. fermentum CCT 1629, L. rhamnosus ATCC 7469 and L. acidophilus Llorente presented better antimicrobial activity. In conclusion, CFS show potential as feed additives to control Salmonella in animal production and may be an alternative to the use of antibiotics, minimizing problems related to antimicrobial resistance.


Subject(s)
Lactobacillales , Probiotics , Salmonella Infections, Animal , Animals , Lactobacillus , Probiotics/pharmacology , Salmonella , Salmonella Infections, Animal/microbiology , Swine
7.
Molecules ; 26(4)2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33672045

ABSTRACT

Hydrochar is a carbon-based material that can be used as soil amendment. Since the physical-chemical properties of hydrochar are mainly assigned to process parameters, we aimed at evaluating the organic fraction of different hydrochars through 13C-NMR and off-line TMAH-GC/MS. Four hydrochars produced with sugarcane bagasse, vinasse and sulfuric or phosphoric acids were analyzed to elucidate the main molecular features. Germination and initial growth of maize seedlings were assessed using hydrochar water-soluble fraction to evaluate their potential use as growth promoters. The hydrochars prepared with phosphoric acid showed larger amounts of bioavailable lignin-derived structures. Although no differences were shown about the percentage of maize seeds germination, the hydrochar produced with phosphoric acid promoted a better seedling growth. For this sample, the greatest relative percentage of benzene derivatives and phenolic compounds were associated to hormone-like effects, responsible for stimulating shoot and root elongation. The reactions parameters proved to be determinant for the organic composition of hydrochar, exerting a strict influence on molecular features and plant growth response.


Subject(s)
Carbon-13 Magnetic Resonance Spectroscopy , Charcoal/chemistry , Charcoal/pharmacology , Gas Chromatography-Mass Spectrometry , Plant Development/drug effects , Quaternary Ammonium Compounds/chemistry , Water/chemistry , Biological Assay , Plant Roots/anatomy & histology , Plant Roots/drug effects , Plant Shoots/anatomy & histology , Plant Shoots/drug effects , Seeds/drug effects , Zea mays/drug effects , Zea mays/growth & development
8.
Ecotoxicol Environ Saf ; 205: 111173, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32853866

ABSTRACT

Fulvic acids (FA) are one of the components of humic substances and play an important role in the interaction with metallic species and, consequently, the bioavailability, distribution and toxicity of metals. However, only a few studies have investigated these FA properties in specific environment, such as anthropogenic soils. Therefore, knowledge about FA molecular composition as well as the FA-metal interaction is essential to predict their behavior in the soil. For this reason, the aim of this study was to investigate the molecular composition of FA extracted from two sites in an anthropogenic soil (Terra Mulata), from the Amazon region, as well as their interactions with Cu(II) ions as a model. Results from 13C NMR, infrared and elemental analysis showed that these FA are composed mostly by alkyl structures and oxygen-functional groups, e.g., hydroxyl, carbonyl and carboxyl. The interaction with Cu(II) ions was evaluated by fluorescence quenching, in which the FA showed both high quantity of complexing sites per gram of carbon and good affinity to interact with the metal when compared with other soil FA. The results showed that the complexation capacity was highly correlated by the content of functional groups, while the binding affinity was largely influenced by structural factors. In addition, through the lifetime decay given by time-resolved fluorescence, it was concluded that static quenching took place in FA and Cu(II) interaction with the formation of a non-fluorescent ground-state complex. Therefore, this fraction of soil organic matter will fully participate in complexation reactions, thereby influencing the mobility and bioavailability of metal in soils. Hence, the importance of the study, and the role of FA in the environment, can be seen especially in the Amazon, which is one of the most important biomes in the world.


Subject(s)
Benzopyrans/analysis , Coordination Complexes/analysis , Copper/analysis , Humic Substances/analysis , Soil Pollutants/analysis , Soil/chemistry , Benzopyrans/chemistry , Biological Availability , Brazil , Carbon/analysis , Coordination Complexes/chemistry , Copper/chemistry , Fluorescence , Ions , Models, Theoretical , Soil Pollutants/chemistry
9.
Sci Total Environ ; 722: 137815, 2020 Jun 20.
Article in English | MEDLINE | ID: mdl-32179299

ABSTRACT

Humic acids (HA) play an important role in the distribution, toxicity, and bioavailability of metals in the environment. Humic-like acids (HLA) that simulate geochemical processes can be prepared by NaOH aqueous extraction from hydrochars produced by hydrothermal carbonization (HTC). HLA can exhibit properties such as those found in HA from soils, which are known for their ability to interact with inorganic and organic compounds. The molecular characteristics of HLA and HA help to explain the relationship between their molecular features and their interaction with metallic species. The aim of this study is to assess the molecular features of HA extracted from Terra Mulata (TM) and HLA from hydrochars as well as their interaction with metals by using Cu(II) ions as a model. The results from 13C NMR, elemental analysis, FTIR, and UV-Vis showed that HA are composed mostly of aromatic structures and oxygenated functional groups, whereas HLA showed a mutual contribution of aromatic and aliphatic structures as main constituents. The interactions of HA and HLA with Cu(II) ions were evaluated through fluorescence quenching, in which the density of complexing sites per gram of carbon for interaction was higher for HLA than for HA. Furthermore, the HLA showed similar values for stability constants, and higher than those found for other types of HA in the literature. In addition, the average lifetime in both humic extracts appeared to be independent of the copper addition, indicating that the main mechanism of interaction was static quenching with a non-fluorescent ground-state complex formation. Therefore, the HLA showed the ability to interact with Cu(II) ions, which suggests that their application can provide a new approach for remediation of contaminated areas.

10.
Parasitology ; 147(3): 340-347, 2020 03.
Article in English | MEDLINE | ID: mdl-31840630

ABSTRACT

Essential oils (EOs) are considered a new class of ecological products aimed at the control of insects for industrial and domestic use; however, there still is a lack of studies involving the control of fleas. Ctenocephalides felis felis, the most observed parasite in dogs and cats, is associated with several diseases. The aim of this study was to evaluate the in vitro activity, the establishment of LC50 and toxicity of EOs from Alpinia zerumbet (Pers.) B. L. Burtt & R. M. Sm, Cinnamomum spp., Laurus nobilis L., Mentha spicata L., Ocimum gratissimum L. and Cymbopogon nardus (L.) Rendle against immature stages and adults of C. felis felis. Bioassay results suggest that the method of evaluation was able to perform a pre-screening of the activity of several EOs, including the discriminatory evaluation of flea stages by their LC50. Ocimum gratissimum EO was the most effective in the in vitro assays against all flea stages, presenting adulticide (LC50 = 5.85 µg cm-2), ovicidal (LC50 = 1.79 µg cm-2) and larvicidal (LC50 = 1.21 µg cm-2) mortality at low doses. It also presented an excellent profile in a toxicological eukaryotic model. These findings may support studies involving the development of non-toxic products for the control of fleas in dogs and cats.


Subject(s)
Ctenocephalides , Insect Control , Insecticides , Oils, Volatile , Alpinia/chemistry , Animals , Cinnamomum/chemistry , Ctenocephalides/growth & development , Cymbopogon/chemistry , In Vitro Techniques , Larva/growth & development , Laurus/chemistry , Mentha spicata/chemistry , Ocimum/chemistry , Ovum/growth & development
11.
BMC Genomics ; 20(1): 798, 2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31672122

ABSTRACT

BACKGROUND: Southern stem canker (SSC), caused by Diaporthe aspalathi (E. Jansen, Castl. & Crous), is an important soybean disease that has been responsible for severe losses in the past. The main strategy for controlling this fungus involves the introgression of resistance genes. Thus far, five main loci have been associated with resistance to SSC. However, there is a lack of information about useful allelic variation at these loci. In this work, a genome-wide association study (GWAS) was performed to identify allelic variation associated with resistance against Diaporthe aspalathi and to provide molecular markers that will be useful in breeding programs. RESULTS: We characterized the response to SSC infection in a panel of 295 accessions from different regions of the world, including important Brazilian elite cultivars. Using a GBS approach, the panel was genotyped, and we identified marker loci associated with Diaporthe aspalathi resistance through GWAS. We identified 19 SNPs associated with southern stem canker resistance, all on chromosome 14. The peak SNP showed an extremely high degree of association (p-value = 6.35E-27) and explained a large amount of the observed phenotypic variance (R2 = 70%). This strongly suggests that a single major gene is responsible for resistance to D. aspalathi in most of the lines constituting this panel. In resequenced soybean materials, we identified other SNPs in the region identified through GWAS in the same LD block that clearly differentiate resistant and susceptible accessions. The peak SNP was selected and used to develop a cost-effective molecular marker assay, which was validated in a subset of the initial panel. In an accuracy test, this SNP assay demonstrated 98% selection efficiency. CONCLUSIONS: Our results suggest relevance of this locus to SSC resistance in soybean cultivars and accessions from different countries, and the SNP marker assay developed in this study can be directly applied in MAS studies in breeding programs to select materials that are resistant against this pathogen and support its introgression.


Subject(s)
Ascomycota/physiology , Chromosome Mapping , Disease Resistance/genetics , Genetic Loci/genetics , Glycine max/genetics , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Alleles , Genetic Markers/genetics , Phenotype , Plant Diseases/immunology , Glycine max/immunology , Glycine max/microbiology
12.
J Pediatr Urol ; 14(4): 346-347, 2018 08.
Article in English | MEDLINE | ID: mdl-29778698

ABSTRACT

This video provides a case report of a 16-year-old male patient who underwent bladder enlargement with a catheterized conduit under Macedo's technique. This technique involves the use of a segment of the distal ileum with a flap that is used for confection of the conduit. Key points include: 1) skin incision planning; 2) bladder release to allow a tension-free anastomosis; 3) reservoir and a conduit creation with a distal ileum; and 4) creation of a continence mechanism.


Subject(s)
Ileum/transplantation , Urinary Catheterization , Urinary Reservoirs, Continent , Adolescent , Humans , Male , Surgical Flaps , Urologic Surgical Procedures/methods
13.
Int Braz J Urol ; 44(2): 407-408, 2018.
Article in English | MEDLINE | ID: mdl-29039892

ABSTRACT

INTRODUCTION: After the diagnosis of transsexualism is confirmed therapy commences with psychotherapeutic preparation for the conversion, and after conversion, long-term patient rehabilitation is maintained for at least two years. The indication for surgery is chronic discomfort caused by discord with the patient's natural gender, intense dislike of developing secondary sex characteristics and the onset of puberty. The surgical conversion of transsexuals is the main step in the complex care of these problematic patients (1). This surgery was first described by Benjamin H, using a flap of inverted penile skin (2) and is considered the gold standard since then. Male-to-female transsexual surgical techniques are well defined and give good cosmetic and functional results. Sex reassignment surgery promotes the improvement of psychological aspects and social relationships as shown in the World Health Organization Quality of Life Assessment applied in the patients submitted to this procedure (3). Techniques include the creation of a normal appearing female introitus, a vaginoplasty allowing sexual intercourse and the capability of clitoral orgasm (4). Various methods for neovaginoplasty have been described and can be classified into five categories, i.e. pedicled intestinal transplants, penile skin grafts, penile skin flaps, non-genital skin flaps and non-genital skin grafts (5). In our Hospital, we use penile and scrotal skin flaps. Until now, 174 procedures have been performed by our team using this technique with high rates of satisfaction (3). PATIENTS AND METHODS: We present a step-by-step male to female transsexual surgery. CONCLUSION: Surgical gender reassignment of male transsexuals resulted in replicas of female genitalia which enabled coitus with orgasm (1). With this video we show step by step that a surgery using penile skin flaps is able to be performed with good cosmetic results.


Subject(s)
Sex Reassignment Surgery/methods , Surgical Flaps , Transsexualism/surgery , Female , Humans , Male , Treatment Outcome
14.
BMC Genomics ; 17: 110, 2016 Feb 13.
Article in English | MEDLINE | ID: mdl-26872939

ABSTRACT

BACKGROUND: Soybean [Glycine max (L.) Merrill] is one of the most important legumes cultivated worldwide, and Brazil is one of the main producers of this crop. Since the sequencing of its reference genome, interest in structural and allelic variations of cultivated and wild soybean germplasm has grown. To investigate the genetics of the Brazilian soybean germplasm, we selected soybean cultivars based on the year of commercialization, geographical region and maturity group and resequenced their genomes. RESULTS: We resequenced the genomes of 28 Brazilian soybean cultivars with an average genome coverage of 14.8X. A total of 5,835,185 single nucleotide polymorphisms (SNPs) and 1,329,844 InDels were identified across the 20 soybean chromosomes, with 541,762 SNPs, 98,922 InDels and 1,093 CNVs that were exclusive to the 28 Brazilian cultivars. In addition, 668 allelic variations of 327 genes were shared among all of the Brazilian cultivars, including genes related to DNA-dependent transcription-elongation, photosynthesis, ATP synthesis-coupled electron transport, cellular respiration, and precursors of metabolite generation and energy. A very homogeneous structure was also observed for the Brazilian soybean germplasm, and we observed 41 regions putatively influenced by positive selection. Finally, we detected 3,880 regions with copy-number variations (CNVs) that could help to explain the divergence among the accessions evaluated. CONCLUSIONS: The large number of allelic and structural variations identified in this study can be used in marker-assisted selection programs to detect unique SNPs for cultivar fingerprinting. The results presented here suggest that despite the diversification of modern Brazilian cultivars, the soybean germplasm remains very narrow because of the large number of genome regions that exhibit low diversity. These results emphasize the need to introduce new alleles to increase the genetic diversity of the Brazilian germplasm.


Subject(s)
Genetic Variation , Genome, Plant , Genomics , Glycine max/genetics , High-Throughput Nucleotide Sequencing , Alleles , Brazil , Cluster Analysis , DNA Copy Number Variations , Genomics/methods , INDEL Mutation , Phylogeny , Polymorphism, Single Nucleotide , Selection, Genetic , Glycine max/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...